3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing
نویسندگان
چکیده
منابع مشابه
3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds
The use of both bioglass (BG) and β tricalcium phosphate (β-TCP) for bone replacement applications has been studied extensively due to the materials' high biocompatibility and ability to resorb when implanted in the body. 3D printing has been explored as a fast and versatile technique for the fabrication of porous bone scaffolds. This project investigates the effects of using different combinat...
متن کاملDesigning heterogeneous porous tissue scaffolds for additive manufacturing processes
A novel tissue scaffold design technique has been proposed with controllable heterogeneous architecture design suitable for additive manufacturing processes. The proposed layer-based design uses a bi-layer pattern of radial and spiral layer consecutively to generate functionally gradient porosity, which follows the geometry of the scaffold. The proposed approach constructs the medial region fro...
متن کاملIn vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects
Metallic implants with a low effective modulus can provide early load-bearing and reduce stress shielding, which is favorable for increasing in vivo life-span. In this research, porous Ti6Al4V scaffolds with three pore sizes (300~400, 400~500, and 500~700 μm) were manufactured by Electron Beam Melting, with an elastic modulus range of 3.7 to 1.7 GPa. Cytocompatibility in vitro and osseointegrat...
متن کاملCartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology
Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From sca...
متن کاملInvestigation of the HA film deposited on the porous Ti6Al4V alloy prepared via additive manufacturing
This study is focused on the use of radio frequency magnetron sputtering to modify the surface of porous Ti6Al4V alloy fabricated via additive manufacturing technology. The hydroxyapatite (HA) coated porous Ti6Al4V alloy was studied in respect with its chemical and phase composition, surface morphology, water contact angle and hysteresis, and surface free energy. Thin nanocrystalline HA film wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Biomaterialia
سال: 2021
ISSN: 1742-7061
DOI: 10.1016/j.actbio.2021.03.021